Regulation of thromboxane receptor trafficking through the prostacyclin receptor in vascular smooth muscle cells: role of receptor heterodimerization.

نویسندگان

  • Stephen J Wilson
  • Jennifer K Dowling
  • Lei Zhao
  • Erin Carnish
  • Emer M Smyth
چکیده

BACKGROUND Prostacyclin (PGI2) and thromboxane (TxA2) effect disparate outcomes for atherogenesis and the response to vascular injury; PGI2, a vasodilator and inhibitor of platelet aggregation, limits the deleterious actions of TxA2, a vasoconstrictor and platelet activator. Dimerization of their G protein-coupled receptors, IP and TP, evokes a modified cellular response through which IP/TP counter-balance may be effected. We examined the consequence of IP/TP interaction for the regulatory pathways of both receptors. METHODS AND RESULTS TPalpha overexpressed in HEK293 cells or expressed endogenously in aortic smooth muscle cells (ASMCs) was internalized after selective activation of either TP or IP. Homologous trafficking of TP was unaltered by coexpression of IP. Heterologous sequestration of TPalpha required the physical presence of activated IP, in transfected and native cells, but was independent of IP signaling to adenylyl cyclase. Reciprocal heterologous regulation of IP, via activated TP, was evident in both HEK293 cells and ASMCs. Homologous TP internalization led to receptor retention and degradation. In contrast, when internalization was IP-induced, TPalpha was recycled to the cell surface in coexpressing HEK293 cells, but not in ASMCs, in accord with the postendocytotic pathway of IP. CONCLUSIONS IP/TPalpha interaction permits reciprocal regulation of receptor endocytosis via the trafficking pathway determined by the activated dimeric partner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterodimerization with the prostacyclin receptor triggers thromboxane receptor relocation to lipid rafts.

OBJECTIVE Prostacyclin and thromboxane mediate opposing cardiovascular actions through receptors termed IP and TP, respectively. When dimerized with IP, the TP shifts to IP-like function. IP localizes to cholesterol-enriched membrane rafts, but TP and IPTP heterodimer localization is not defined. We examined these receptors' membrane localization and the role of rafts in receptor function. ME...

متن کامل

Effect of apelin on cardiac contractility in acute reno-vascular hypertension: The role of apelin receptor and kappa opioid receptor heterodimerization

Objective(s): Apelin/APJ system plays an important role in the regulation of myocardial contractility (MC) and blood pressure. Opioid receptors (OPRs) are also important cardiovascular regulators and exert many of their effects through modulating the function of other systems. This study analyzed the interaction between APJ and kappa OPRs (KOR) in cardiac responsiveness to apelin in acute reno-...

متن کامل

Characterization and Targeting of Thromboxane Receptor Dimerization: A Gateway to Novel Therapeutic Developments

Thromboxane A2 (TXA2) contributes to cardiovascular disease (CVD) by activating platelets and vascular smooth muscle cell constriction and proliferation. Despite their preclinical efficacy, pharmacological antagonists of the TXA2 receptor (the TP), a G protein-coupled receptor (GPCR), have not been clinically successful, raising interest in novel approaches to modifying TP function. We sought t...

متن کامل

Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease.

OBJECTIVE Prostacyclin and thromboxane mediate opposing cardiovascular effects through their receptors, the prostacyclin receptor (IP) and thromboxane receptor (TP). Individuals heterozygous for an IP variant, IP(R212C), displayed exaggerated loss of platelet IP responsiveness and accelerated cardiovascular disease. We examined association of IP(R212C) into homo- and heterodimeric receptor comp...

متن کامل

MUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH

Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 27 2  شماره 

صفحات  -

تاریخ انتشار 2007